
Continuous Quality Assurance in Implemented
Architecture Models

Jan Hinzmann
Deutsches Zentrum fuer Luft-

und Raumfahrt e.V. (DLR)
Lilienthalplatz 7

38108 Braunschweig
Jan-

Oliver.Hinzmann@dlr.de

Axel Berres
Deutsches Zentrum fuer Luft-

und Raumfahrt e.V. (DLR)
Rutherfordstrasse 2

12489 Berlin
Axel.Berres@dlr.de

Andreas Schreiber
Deutsches Zentrum fuer Luft-

und Raumfahrt e.V. (DLR)
Linder Hoehe
51147 Koeln

Andreas.Schreiber@dlr.de

Daniel Luebke
Leibniz Universit -at Hannover

Welfengarten 1
30167 Hannover

Daniel.Luebke@inf.uni-
hannover.de

ABSTRACT
During the ongoing development of software the implemen-
tation drifts away from the initial design due to the changing
requirements (known as moving targets), lack of communica-
tion and unforeseen difficulties. This drift is unacceptable as
the design represents the common picture and is the basis for
further development and maintenance of the software, and
should therefore only be changed after communication took
place which updates this common picture. Automating con-
tinuous comparison of design and implementation (resulting
in model differences) during the development phase increases
the quality of a software project. Checking continuously for
model differences and propagating them appropriately will
increase the communication between the roles engaged in
software projects leading to less misunderstandings and de-
creasing the amount of failed software projects.

Our approach detects differences between architecture and
implementation in a non-invasive manner. It initiates com-
munication between architects and engineers so that both
the implementation and the architectural artefact keep up-
to-date.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model checking

General Terms
Design

Keywords
Software engineering, static analysis, communication, Java,
model differences

1. INTRODUCTION
Whenever people work together, communication plays an
important role for the outcome of their work. The area
of computer science is no exception. But communication
also carries the risk of misunderstanding. Very often, people
engaged in projects are not aware of the misunderstandings
for a while. The longer these misunderstandings are not
detected, the more costly they can become.

As software projects require different roles (customer, ar-
chitect, engineer, ...) and due to the complexity of many
domains, the communication between these roles is essen-
tial to the project’s success or failure. We see the whole
software development process as permanent communication
about a problem. In consequence, the quality of commu-
nication between the partners in a project can be directly
related to the quality of the project’s outcome.

After gathering the requirements in software projects, the
architect works out an initial design. Afterwards, she has to
communicate the design to the developers who will imple-
ment it. During the communication the architect’s picture of
the possible solution gets transferred to the developers. But
on the way from the architect to the other team members
the picture changes slightly due to the problem of commu-
nication (different experience, socialization, etc.). Even if
we have a layer of indirection like a design language such as
UML, there is still a risk of misunderstandings.

Already at this early stage of development we observe differ-
ences between what the architect has in mind and what the
developers do. Going one step further, the developers imple-
ment their point of view which leads to further differences
as they change the design during the implementation.

The result is a software which differs from the architect’s
model, from the developer’s model and (this seems to be
most important) there is a high chance, that the project
outcome differs strongly from the model the customer had
in mind. This is especially bad, if the software design was
part of the contract, e.g. if software components are sub-
contracted.

The above implies that good communication between all
roles in a projects is the key to project success. But commu-
nication can and often must be initiated. Often one doesn’t
even know that there are problems in a project. Therefore,
we introduce the tool MoDi, which compares the implemen-
tation to the design, finds out the relevant differences, and
communicates the results to the responsible people. Conse-
quently, architects and developers can get into contact and
discuss the changes. After such a meeting, either the archi-
tect improves the design because the changes were needed or
the developers reimplement parts of the software according
to the architecture.

The rest of this paper is organized as follows: Section 2
presents an overview of closely related work. In Section 3,
we define the relevant terms and describe the basic tech-
niques for comparing software models. Section 4 introduces
the current design considerations for a software toolkit for
checking model differences. In Section 5, we conclude the
paper by summarizing the contributions and possible future
work.

2. RELATED WORK
The approach in [5] uses source code annotations and there-
fore has to be applied during the process. Our approach is
non-invasive and can be used even for completed projects.

The tool Sotograph (http://www.software-tomography.com)
seems to have a quite similar approach but at the moment
we are not aware of the technologie behind it. As sotograph
can discover many different issues in software projects our
tool ModI can be integrated in the daily development cycle.

We agree with [1] that software architecture is a ... high-
level organization as a collection of interacting components,
connectors, and constraints on interaction, along with addi-
tional properties defining the expected behavior.

We do not restrict our tool on some specific technology such
as ArchJava in [2]. We work on the language itself and
therefore our approach is feasible as long the programming
language has a defined grammar (e.g. in EBNF). This is
needed for generating language specific parsers to import
the engineer’s model into our meta model. Using a CASE
tool the architect should be able to provide a code fragment
of his design. This is done by drawing UML diagrams and
exporting them to source code or into an XMI representa-
tion. Currently, we support finding structural aspects of
software but plan to take behavior into account.

3. MODEL DIFFERENCES
In many cases, the architecture of software systems is spec-
ified in UML and the implementation on the other side is
represented through source code. Due to the nature of the
software development process both, the architecture and the

imp lementation, are subject to change as the development
of the system proceeds. Mastering these changes is a key
condition for the success of the underlying project. To as-
sist developers, architects and technical project leads, we
propose a tool based approach to discover differences be-
tween the intended software design and the implementation
continuously. The proposed tool initiates communication by
sending reports to associates roles.

The current work covers the structural part of a software
system. We have focused on the interfaces defined by an
architect as initial design so far.

AM

Architects

Model

DM

Developer

Model

IC

Implemented

Code

MoDi SE

AM == IC ? OK : report

Architect Developer

Figure 1: Genesis of model differences

From a high level view of the software development pro-
cess (see Figure 1) an architect specifies his architect model
(AM) using UML. Afterwards, he communicates his design
to the engineer resulting in an developer model (DM). Due
to the nature of communication, we already observe differ-
ences between the AM and the DM after this step.

In the course of the project, the developer implements the
DM resulting in the implemented Code (IC). Again we ob-
serve differences between the DM and the IC due to the
evolutionary process of software development.

It is fundamental to check the resulting IC against the initial
AM and discover the differences between them. Initiating
communication between the participating roles, leads to a
refinement of the AM and to refactoring of the DM/IC.

Applying continuous checking for model differences to the
software process improves the communication and in conse-
quence the quality of the whole project.

The tool MoDi integrates seamless into many known devel-
opment processes as it is transparent to the user. Once the
architect and the engineers have defined a set of rules they
want to apply to their project, MoDi checks them continu-
ously and initiates communication gently if a rule has been
broken.

3.1 Base of Comparison
As the architect specifies his design in UML using a CASE
tool, we get – depending on the serialization of this tool –
XMI files or source code. On the other hand we have the
code base from the developer model. In order to compare
the AM with the DM we have to provide a common base
for comparison. It is the responsibility of a transformation

component to provide such a comparison base.

3.1.1 XMI
The XML Metadata Interchange (XMI) as OMG standard is
used for an interchange format for UML models. Although
it is supposed to be understood by the different UML tools,
in practice this as rare. Nevertheless MoDi can be easily
adapted to support different kinds of XMI formats for trans-
forming architectural descriptions into its internal meta rep-
resentation.

3.1.2 Source Code
More reliable than the XMI representation is the source
code and in the end the source contains all of the imple-
mented design. If we have a grammar for the given lan-
guage dealing with source code becomes very easy. From
the EBNF grammar we can create a parser (using tools like
lex, bison, JavaCC, SablsCC, GOLDParser or ANTLR) and
build an abstract syntax tree (AST). Currently MoDi uses
the ANTLR parser generator. Having an AST representa-
tion of the AM and the DM leads to algorithms for tree
comparison.

3.1.3 Meta Representation
Introducing an abstraction layer to the language specific
source code let us deal with more than one programming
language. Furthermore, this abstraction layer helps us to
control exactly the amount of information we need. The
MoDi system internally generates abstract syntax trees from
given source code. Afterwards, it reads the relevant infor-
mation from the generated ASTs and stores them in the
meta representation. Figure 2 shows the situation after an
AM and a DM have been parsed and the ASTs have been
generated. In the following step, the MoDi system extracts
the relevant information and sets up the meta representa-
tion, which represents the layers of the AST (Model, Item,
Member and Token layer).

Model

Item

Member

Token

 AM_AST DM_AST

Figure 2: The resulting AST and its layers

Figure 2 also shows model differences. The internal meta
representation has to cover all items that are subject to pos-
sible changes. Also some meta data on the models can be
saved, so that we can reference roles and revisions of the
models. The Entity Relationship diagram shown in Fig-
ure 3 gives an overview of the current design of the meta
representation and what can be.

3.2 Changes
3.2.1 Items of Change in Architectures
Relevant items in modern object oriented languages regard-
ing architectural elements on the source code level are classes
and interfaces. Interfaces can be divided into a signature

Figure 3: Entity relationship diagram of the meta
representation

and a body. For example, the signature of a Java interface
is composed of modifiers, the keyword interface, an identi-
fying name and a optional list of extended parent interfaces.
The body of an interface can contain constants and method
signatures. They all have also modifiers, a type and an
identifier. Constants then have a value and methods have a
return type and an optional parameter list. All these items
are subject to change and can lead to model differences.

3.2.2 Rules for Changes
In principle, MoDi can identify all differences between the
AM and the DM. However, as reporting all differences could
result in a great amount of information, the user should be
able to define a set of rules that filter this information. These
can be something like

• methods (added/removed/renamed),

• parameter (added/...),

• return types,

• names, or

• interfaces.

Although the system could try to be aware of renaming in-
terfaces, we state that this is equal to the removal of an
original interface and the addition of a new one. This is
because the original interface is not available to any other
software component accessing it – therefore, it is deleted
from the point of view of that component. Instead, a new
interface is visible.

4. TOOL FOR MODEL DIFFERENCES
After having identified the items which can change in ar-
chitectural elements (such as interfaces), we provide a set
of rules which are associated with a specific item of change.

Once triggered by a recognized model difference, the MoDi

system will automatically initiate communication between
the relevant roles. This communication might lead to a
change of the design or not. In any case the common picture
of the software is updated for every team member.

4.1 Overview
The principal structure of the tool MoDi is shown in Figure 4.

MoDi

transform

compare

communicate

AM

report

Architect Engineer

Meta Representation

DM

Figure 4: the big picture of MoDi

Starting from a model (AM or DM) the system imports the
relevant files and converts them into an meta representa-
tion. We found it important to use a meta representation
so that we can avoid performance issues that would result
from using tree comparison. Using the meta representation
the system finds all model differences and can evaluate the
configured rules in order to generate a report. If a rule is
evaluated to false, the comparison component generates a
report item and adds it to the resulting report. This report
now holds all report items obtained from the comparison
component. Finally, the communication component can ap-
ply filter and grouping functions on the report items and
send the resulting final report to the associated roles such
as architects and developers.

A layered view of the system is shown in Figure 5. It also
shows the possibility to implement different transform and
parsing components enabling MoDi to work on different lan-
guages.

Meta Model

Persistence

Evaluation

Query

Transformation

JavaTransformation

JavaParsing C++Parsing ...
Report

C++Transformation ...

Figure 5: Layers of MoDi

4.2 A Closer Look at the Components
In Figure 4 we have seen the big picture. We will now take
a closer look at each of these components. Starting with the
transform component (shown in Figure 6) we see that this
component has to know where to find a model.

4.2.1 transform
The path to the code bases of the AM and the DM have
to be configured in the system. The FileFinder then finds
relevant project files using a FileFinderFilter (omitted in
Figure 6). Having found all relevant files from the model,
the FileFinder passes a list of these files to the Parser

component, which parses each file and generates an abstract
syntax tree (AST). The resulting trees are then put together
in a single model AST (MAST).

transform

 AM / DM

Meta Representation (MR)

<<List>> ModelFiles

Model AST

FileFinder

Parser

TreeWalker

Figure 6: the transform component

The MAST itself is passed to the TreeWalker component
which is responsible for the creation of the meta represen-
tation. Primarily, the TreeWalker traverses the tree and
separates relevant information from irrelevant information
regarding model differences. This is reducing the problem
space.

4.2.2 compare

Having imported a model using the import component we
obtained the meta representation which contains all relevant
information for identifying model differences.

The comparison can now be achieved by the compare com-
ponent (Figure 7). Therefore it queries the meta represen-
tation of the architects model and the one provided by the
developer. This is done by the Comparator object which
bases its queries on a set of Rule objects configured by the
architect. A rule for instance can allow or deny the renam-
ing of interfaces, the addition of methods to or the removal
of methods from an interface and also changing return types
or type and number of parameters defined in a method sig-
nature.

 compare

Meta Representation (MR)

1 *
Comparator Rule

Reporter ReportItem
1 *

 Report

Figure 7: the compare component

However, once the rules have been evaluated, each rule re-
sults in a ReportItem which is a human readable string rep-
resentation of its outcome. These report items are collected
by the Reporter object. Having collected all ReportItems
the Reporter object makes the final report available to the
subsequent communication component.

4.2.3 Communication
After the comparison of the two models took place, the re-
sults must be communicated to the associated roles. This
is done by the communication component (Figure 8). One
can personalize the report according to the different roles
as an architect might want to read other information than
a developer. Such role dependent reports could be achieved
by filtering and grouping report items according to the role
of an architect or a developer but this seems contraindicated
as it might lead to misunderstandings if architect and devel-
oper discuss upcoming model differences based on different
reports.

5. CONCLUSION AND FUTURE WORK
We have implemented a prototype of MoDi which is based
on the widely used programming language Java. We can
translate Java source code into our meta representation. To
enable support for other languages one simply has to follow
these steps:

 Report

 communicate

1*
CommunicatorRole

Figure 8: the communicate component

1. write or obtain an ANTLR grammar for the language,

2. generate the language specific parser using ANTLR,

3. implement a TreeWalker in order to retrieve the rele-
vant information from the ASTs

4. define a set of rules.

Using the tool MoDi continuously during a software project,
one is able to detect model differences just at the moment
when they appear (they manifest themselves during a com-
mit to the SCM). Therefore, we are aware of the drift from
the initial design and can initiate communication among the
involved roles at an early stage of this drift.

Having this prototype of Modi we will use it to discover
model differences in a software project that has already fin-
ished. In order to simulate the progress of that project we
retrieve svn revision from the projects repository. Like this
we can messure the amount of changes in the architecture
and the implementation. We also apply the MoDi tool to
current projects in order to improve our system.

6. ADDITIONAL AUTHORS
7. REFERENCES
[1] Marwan Abi-Antoun, Jonathan Aldrich, David Garlan,

Bradley Schmerl, Nagi Nahas, and Tony Tseng.
Improving system dependability by enforcing
architectural intent. In WADS ’05: Proceedings of the
2005 workshop on Architecting dependable systems,
pages 1–7, New York, NY, USA, 2005. ACM Press.

[2] Jonathan Aldrich, Craig Chambers, and David Notkin.
Archjava: connecting software architecture to
implementation. In ICSE, pages 187–197, 2002.

[3] Walter R. Bischofberger, Jan Kühl, and Silvio Löffler.
Sotograph - a pragmatic approach to source code
architecture conformance checking. In EWSA, pages
1–9, 2004.

[4] Won Kim. On designing software architectures. In
Journal of Object Technology , vol. 5, no. 7,
September-October 2006, pp.27-32, 2006.

[5] Holger Krahn and Bernhard Rumpe. Enabling
architectural refactorings through source code
annotations. In Modellierung, pages 203–212, 2006.

[6] Roshanak Roshandel, Bradley R. Schmerl, Nenad
Medvidovic, David Garlan, and Dehua Zhang.
Understanding tradeoffs among different architectural
modeling approaches. In WICSA, pages 47–56, 2004.

[7] Friedrich Steimann and Philip Mayer. Patterns of
interface-based programming. Journal of Object
Technology, 4(5):75–94, 2005.

